## An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit

#### Li Wang

Department of Mathematics UCLA

Joint with Bokai Yan

SIAM CSE Meeting Salt Lake City

(日) (四) (王) (王) (王)

### Outline



Linear Boltzmann equation and fractional diffusion limit

2 Asymptotic preserving scheme

3 Numerical examples



æ

・ロト ・回ト ・ヨト ・ヨト

### Outline

#### Linear Boltzmann equation and fractional diffusion limit

2 Asymptotic preserving scheme

3 Numerical examples



æ

・ロト ・回ト ・ヨト ・ヨト

### Linear Boltzmann equation



 $\partial_t f + v \cdot \nabla_x f = \mathcal{L}(f), \qquad (t, x, v) \in (0, \infty) \times \mathbf{R}^N \times \mathbf{R}^N,$  $f(0, x, v) = f_0(x, v),$ 

where the collision  $\mathcal{L}$  takes the form

$$\mathcal{L}(f) = \int_{\mathbf{R}^N} \left[ \sigma(x, v, v') f(t, x, v') - \sigma(x, v', v) f(t, x, v) \right] \, \mathrm{d}v'.$$

- $\sigma(x, v, v') \ge 0$  is the transition probability
- $\mathcal{L}$  has a unique equilibrium function  $\mathcal{F}(v) \geq 0$  satisfying

$$\mathcal{L}(\mathcal{F}) = 0, \qquad \mathcal{F}(v) = \mathcal{F}(-v), \qquad \int_{\mathbf{R}^N} \mathcal{F}(v) \, \mathrm{d}v = 1 \quad \text{for all} \ x \in \mathbf{R}^N.$$

### Classical diffusion limit



 $\epsilon{:}$  ratio of the mean free path over the macroscopic length scale.  $x'=\epsilon x,\,t'=\epsilon^2 t{:}$ 

$$\epsilon^2 \partial_t f + \epsilon v \cdot \nabla_x f = \mathcal{L}(f).$$

Hilbert expansion:  $f = f_0 + \epsilon f_1 + \epsilon^2 f_2 + \cdots$ 

$$O(1): \mathcal{L}(f_0) = 0 \implies f_0 = \rho(t, x)\mathcal{F}(v)$$
  

$$O(\epsilon): v \cdot \nabla_x f_0 = \mathcal{L}(f_1) \implies f_1 = \mathcal{L}^{-1}(v \cdot \nabla_x f_0)$$
  

$$O(\epsilon^2): \partial_t f_0 + v \cdot \nabla_x f_1 = \mathcal{L}(f_2) \implies \partial_t \rho - \nabla_x (D\nabla_x \rho) = 0$$
  

$$D = \int_{\mathbb{R}^n} v \otimes \mathcal{L}^{-1}(v\mathcal{F}) \, \mathrm{d}v$$

イロト イロト イヨト イヨト 二日

Consider

$$\mathcal{F}(v) \sim \frac{\kappa_0}{|v|^{N+\alpha}}, \qquad 1 < \alpha < 2, \qquad \text{as } |v| \to \infty.$$

**Applications:** 

- granular plasma with dissipative collision
- astrophysical plasma
- economy
- • •

 $D = \int_{\mathbb{R}^n} v \otimes \mathcal{L}^{-1}(v\mathcal{F}) \, \mathrm{d}v$  is infinite. Classical diffusion theory fails:(

We consider a different scaling:

$$\epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = \mathcal{L}(f).$$

Li Wang (UCLA)



Consider

$$\mathcal{F}(v) \sim \frac{\kappa_0}{|v|^{N+\alpha}}, \qquad 1 < \alpha < 2, \qquad \text{as } |v| \to \infty.$$

#### Applications:

- granular plasma with dissipative collision
- astrophysical plasma
- economy
- • •

 $D = \int_{\mathbb{R}^n} v \otimes \mathcal{L}^{-1}(v\mathcal{F}) \, \mathrm{d}v$  is infinite. Classical diffusion theory fails:(

We consider a different scaling:

$$\epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = \mathcal{L}(f).$$

Li Wang (UCLA)



Consider

$$\mathcal{F}(v) \sim \frac{\kappa_0}{|v|^{N+\alpha}}, \qquad 1 < \alpha < 2, \qquad \text{ as } |v| \to \infty.$$

#### Applications:

- granular plasma with dissipative collision
- astrophysical plasma
- economy
- • •

 $D = \int_{\mathbb{R}^n} v \otimes \mathcal{L}^{-1}(v\mathcal{F}) \, \mathrm{d}v$  is infinite. Classical diffusion theory fails:(

We consider a different scaling:

$$\epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = \mathcal{L}(f).$$

Li Wang (UCLA)





Consider

$$\mathcal{F}(v) \sim \frac{\kappa_0}{|v|^{N+\alpha}}, \qquad 1 < \alpha < 2, \qquad \text{as } |v| \to \infty.$$

#### Applications:

- granular plasma with dissipative collision
- astrophysical plasma
- economy
- • •

 $D = \int_{\mathbb{R}^n} v \otimes \mathcal{L}^{-1}(v\mathcal{F}) \, \mathrm{d}v$  is infinite. Classical diffusion theory fails:(

We consider a different scaling:

$$\epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = \mathcal{L}(f).$$

Li Wang (UCLA)





$$\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$$

Insert Hilbert expansion  $f = f_0 + g_1 + g_2 + \cdots$ , then the leading terms solve <sup>1</sup>  $0 = \mathcal{L}(f_0) = \langle f_0 \rangle \mathcal{F} - f_0$  $\implies f_0 = \rho_0 \mathcal{F}(v)$ 

$$\begin{split} \epsilon v \cdot \nabla_x (f_0 + g_1) &= -g_1 \\ &\Longrightarrow (1 + i\epsilon v \cdot k) \hat{g}_1 = -i\epsilon v \cdot k \hat{f}_0 \\ &\quad \frac{1}{\epsilon^{\alpha}} \langle \hat{g}_1 \rangle = \frac{1}{\epsilon^{\alpha}} \int_{\mathbf{R}^N} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \hat{\rho}_0 \to \kappa |k|^{\alpha} \hat{\rho}_0 \\ &\epsilon^{\alpha} \partial_t f_0 = \langle g_1 \rangle \, \mathcal{F} + \mathcal{L}(g_2) \\ &\Longrightarrow \epsilon^{\alpha} \partial_t \rho_0 = \langle g_1 \rangle \end{split}$$

 $\partial_t \rho_0 + \kappa (-\triangle)^{\frac{\alpha}{2}} \rho_0 = 0$ 

<sup>1</sup>Abdallah-Mellet-Puel, Kinetic Related Models 2014

7/24

イロト イロト イヨト イヨト 二日



$$\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$$

Insert Hilbert expansion  $f = f_0 + g_1 + g_2 + \cdots$ , then the leading terms solve <sup>1</sup>  $0 = \mathcal{L}(f_0) = \langle f_0 \rangle \mathcal{F} - f_0$  $\implies f_0 = \rho_0 \mathcal{F}(v)$ 

$$\begin{split} \epsilon v \cdot \nabla_x (f_0 + g_1) &= -g_1 \\ &\Longrightarrow (1 + i\epsilon v \cdot k) \hat{g}_1 = -i\epsilon v \cdot k \hat{f}_0 \\ &\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_1 \rangle = \frac{1}{\epsilon^{\alpha}} \int_{\mathbf{R}^N} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \hat{\rho}_0 \to \kappa |k|^{\alpha} \hat{\rho}_0 \\ &\epsilon^{\alpha} \partial_t f_0 = \langle g_1 \rangle \, \mathcal{F} + \mathcal{L}(g_2) \\ &\Longrightarrow \epsilon^{\alpha} \partial_t \rho_0 = \langle g_1 \rangle \end{split}$$

 $\partial_t \rho_0 + \kappa (-\triangle)^{\frac{\alpha}{2}} \rho_0 = 0$ 

<sup>1</sup>Abdallah-Mellet-Puel, Kinetic Related Models 2014

7 / 24



$$\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$$

Insert Hilbert expansion  $f = f_0 + g_1 + g_2 + \cdots$ , then the leading terms solve <sup>1</sup>  $0 = \mathcal{L}(f_0) = \langle f_0 \rangle \mathcal{F} - f_0$  $\implies f_0 = \rho_0 \mathcal{F}(v)$ 

$$\begin{split} \epsilon v \cdot \nabla_x (f_0 + g_1) &= -g_1 \\ &\Longrightarrow (1 + i\epsilon v \cdot k) \hat{g}_1 = -i\epsilon v \cdot k \hat{f}_0 \\ &\quad \frac{1}{\epsilon^{\alpha}} \langle \hat{g}_1 \rangle = \frac{1}{\epsilon^{\alpha}} \int_{\mathbf{R}^N} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \hat{\rho}_0 \to \kappa |k|^{\alpha} \hat{\rho}_0 \\ &\epsilon^{\alpha} \partial_t f_0 = \langle g_1 \rangle \, \mathcal{F} + \mathcal{L}(g_2) \\ &\Longrightarrow \epsilon^{\alpha} \partial_t \rho_0 = \langle g_1 \rangle \end{split}$$

 $\partial_t \rho_0 + \kappa (-\Delta)^{\frac{\alpha}{2}} \rho_0 = 0$ 

<sup>1</sup>Abdallah-Mellet-Puel, Kinetic Related Models 2014



$$\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$$

Insert Hilbert expansion  $f = f_0 + g_1 + g_2 + \cdots$ , then the leading terms solve <sup>1</sup>  $0 = \mathcal{L}(f_0) = \langle f_0 \rangle \mathcal{F} - f_0$  $\implies f_0 = \rho_0 \mathcal{F}(v)$ 

$$\begin{split} \epsilon v \cdot \nabla_x (f_0 + g_1) &= -g_1 \\ \implies (1 + i\epsilon v \cdot k)\hat{g_1} = -i\epsilon v \cdot k\hat{f_0} \\ &\frac{1}{\epsilon^{\alpha}} \langle \hat{g_1} \rangle = \frac{1}{\epsilon^{\alpha}} \int_{\mathbf{R}^N} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \hat{\rho}_0 \to \kappa |k|^{\alpha} \hat{\rho}_0 \\ \epsilon^{\alpha} \partial_t f_0 &= \langle g_1 \rangle \, \mathcal{F} + \mathcal{L}(g_2) \\ &\implies \epsilon^{\alpha} \partial_t \rho_0 = \langle g_1 \rangle \end{split}$$

 $\partial_t \rho_0 + \kappa (-\triangle)^{\frac{\alpha}{2}} \rho_0 = 0$ 

<sup>1</sup>Abdallah-Mellet-Puel, Kinetic Related Models 2014

7/24



$$\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$$

Insert Hilbert expansion  $f = f_0 + g_1 + g_2 + \cdots$ , then the leading terms solve <sup>1</sup>  $0 = \mathcal{L}(f_0) = \langle f_0 \rangle \mathcal{F} - f_0$  $\implies f_0 = \rho_0 \mathcal{F}(v)$ 

$$\begin{split} \epsilon v \cdot \nabla_x (f_0 + g_1) &= -g_1 \\ \implies (1 + i\epsilon v \cdot k) \hat{g_1} = -i\epsilon v \cdot k \hat{f_0} \\ &\frac{1}{\epsilon^{\alpha}} \langle \hat{g_1} \rangle = \frac{1}{\epsilon^{\alpha}} \int_{\mathbf{R}^N} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \hat{\rho}_0 \to \kappa |k|^{\alpha} \hat{\rho}_0 \\ \epsilon^{\alpha} \partial_t f_0 &= \langle g_1 \rangle \, \mathcal{F} + \mathcal{L}(g_2) \\ &\implies \epsilon^{\alpha} \partial_t \rho_0 = \langle g_1 \rangle \end{split}$$

$$\partial_t \rho_0 + \kappa (-\triangle)^{\frac{\alpha}{2}} \rho_0 = 0$$

<sup>1</sup>Abdallah-Mellet-Puel, Kinetic Related Models 2014

Li Wang (UCLA)

### Fractional diffusion limit: general case



$$\epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = K(f) \mathcal{F} - \nu(x, v) f$$
$$K(f) = \int_{\mathbf{R}^N} \phi(x, v, v') f(t, x, v') \, \mathrm{d}v', \qquad \nu(x, v) = \int_{\mathbf{R}^N} \phi(x, v', v) \mathcal{F}(v') \, \mathrm{d}v'$$

$$\begin{aligned} \epsilon &\to 0 \qquad \partial_t \rho_0 + L(\rho_0) = 0 \\ L(\rho) &= \kappa_0 P.V. \int_{\mathbf{R}^N} \gamma(x, y) \frac{\rho(x) - \rho(y)}{|y - x|^{N + \alpha}} \, \mathrm{d}y \\ \gamma(x, y) &= \nu_0(x) \nu_0(y) \int_0^\infty z^\alpha e^{-z \int_0^1 \nu_0((1 - s)x + sy) ds} \, \mathrm{d}z \end{aligned}$$

- we use an integral formulation of  $\nu(x) + \epsilon v \cdot \nabla_x$
- when  $\phi(x, v, v') = 1$ ,  $\nu(v) \equiv 1$  and thus  $\nu_0 = 1$ . Then  $L(\rho) = \kappa_0 P.V. \int_{\mathbf{R}^N} \frac{\rho(x) - \rho(y)}{|y - x|^{N + \alpha}} \, \mathrm{d}y$ , which is the integral representation of  $\kappa(-\Delta)^{\frac{\alpha}{2}}$ .

Li Wang (UCLA)

#### AP for fractional diffusion

8 / 24

Fractional diffusion limit: general case



$$\epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = K(f) \mathcal{F} - \nu(x, v) f$$
$$K(f) = \int_{\mathbf{R}^N} \phi(x, v, v') f(t, x, v') \, \mathrm{d}v', \qquad \nu(x, v) = \int_{\mathbf{R}^N} \phi(x, v', v) \mathcal{F}(v') \, \mathrm{d}v'$$

$$\epsilon \to 0 \qquad \partial_t \rho_0 + L(\rho_0) = 0$$
$$L(\rho) = \kappa_0 P.V. \int_{\mathbf{R}^N} \gamma(x, y) \frac{\rho(x) - \rho(y)}{|y - x|^{N + \alpha}} \, \mathrm{d}y$$
$$\gamma(x, y) = \nu_0(x)\nu_0(y) \int_0^\infty z^\alpha e^{-z \int_0^1 \nu_0((1 - s)x + sy) ds} \, \mathrm{d}z$$

- we use an integral formulation of  $\nu(x) + \epsilon v \cdot \nabla_x$
- when  $\phi(x, v, v') = 1$ ,  $\nu(v) \equiv 1$  and thus  $\nu_0 = 1$ . Then  $L(\rho) = \kappa_0 P.V. \int_{\mathbf{R}^N} \frac{\rho(x) - \rho(y)}{|y - x|^{N + \alpha}} \, \mathrm{d}y$ , which is the integral representation of  $\kappa(-\Delta)^{\frac{\alpha}{2}}$ .

Li Wang (UCLA)

AP for fractional diffusion

8 / 24

Fractional diffusion limit: general case



$$\epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = K(f) \mathcal{F} - \nu(x, v) f$$
$$K(f) = \int_{\mathbf{R}^N} \phi(x, v, v') f(t, x, v') \, \mathrm{d}v', \qquad \nu(x, v) = \int_{\mathbf{R}^N} \phi(x, v', v) \mathcal{F}(v') \, \mathrm{d}v'$$

$$\begin{aligned} \epsilon \to 0 \qquad \partial_t \rho_0 + L(\rho_0) &= 0 \\ L(\rho) &= \kappa_0 P.V. \int_{\mathbf{R}^N} \gamma(x, y) \frac{\rho(x) - \rho(y)}{|y - x|^{N + \alpha}} \, \mathrm{d}y \\ \gamma(x, y) &= \nu_0(x) \nu_0(y) \int_0^\infty z^\alpha e^{-z \int_0^1 \nu_0((1 - s)x + sy) ds} \, \mathrm{d}z \end{aligned}$$

- we use an integral formulation of  $\nu(x) + \epsilon v \cdot \nabla_x$
- when  $\phi(x, v, v') = 1$ ,  $\nu(v) \equiv 1$  and thus  $\nu_0 = 1$ . Then  $L(\rho) = \kappa_0 P.V. \int_{\mathbf{R}^N} \frac{\rho(x) - \rho(y)}{|y - x|^{N + \alpha}} \, \mathrm{d}y$ , which is the integral representation of  $\kappa(-\Delta)^{\frac{\alpha}{2}}$ .

Li Wang (UCLA)

8 / 24

### Outline



2 Asymptotic preserving scheme

**3** Numerical examples



æ

(日) (四) (王) (王) (王)



# **Our goal**: design a scheme uniformly stable in both kinetic ( $\epsilon = O(1)$ ) and diffusive ( $\epsilon \ll 1$ ) regimes.

#### **Difficulties**:

- stiffness
- $\bigcirc$  <sup>2</sup> reshuffled Hilbert expansion
- fat tail in the equilibrium

### $\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$

<sup>2</sup>Jin-Pareschi-Toscani, SIANUM 2000, 🛛 Lemou-Mieussens MiGO 20個野 🗸 道 🕨 🧵 🥠 🤆 🤆



**Our goal**: design a scheme uniformly stable in both kinetic ( $\epsilon = O(1)$ ) and diffusive ( $\epsilon \ll 1$ ) regimes.

#### Difficulties:

- stiffness
- 2 <sup>2</sup> reshuffled Hilbert expansion
- 3 fat tail in the equilibrium

### $\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$

<sup>2</sup>Jin-Pareschi-Toscani, SIANUM 2000, Lemou-Mieussens SISC 20應 🕨 < 🖘 🛓 🔈 q @



**Our goal**: design a scheme uniformly stable in both kinetic ( $\epsilon = O(1)$ ) and diffusive ( $\epsilon \ll 1$ ) regimes.

#### Difficulties:

- stiffness
- 2 <sup>2</sup> reshuffled Hilbert expansion
- *fat tail* in the equilibrium

### $\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$



**Our goal**: design a scheme uniformly stable in both kinetic ( $\epsilon = O(1)$ ) and diffusive ( $\epsilon \ll 1$ ) regimes.

#### Difficulties:

- stiffness
- $2^{2}$  reshuffled Hilbert expansion
- *fat tail* in the equilibrium

### $\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$

<sup>2</sup>Jin-Pareschi-Toscani, SIANUM 2000, Lemou-Mieussens SISC 2008 → < ≥ → < ≥ → Li Wang (UCLA) AP for fractional diffusion 10 / 24



**Our goal**: design a scheme uniformly stable in both kinetic ( $\epsilon = O(1)$ ) and diffusive ( $\epsilon \ll 1$ ) regimes.

#### Difficulties:

- stiffness
- 2 <sup>2</sup>reshuffled Hilbert expansion
- fat tail in the equilibrium

### $\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$

<sup>2</sup>Jin-Pareschi-Toscani, SIANUM 2000, Lemou-Mieussens SISC 2008 → < ≥ → < ≥ → Li Wang (UCLA) AP for fractional diffusion 10 / 24



**Our goal**: design a scheme uniformly stable in both kinetic ( $\epsilon = O(1)$ ) and diffusive ( $\epsilon \ll 1$ ) regimes.

#### Difficulties:

- stiffness
- $2^{2}$  reshuffled Hilbert expansion
- fat tail in the equilibrium

$$\epsilon^{\alpha}\partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \qquad 1 < \alpha < 2$$

<sup>&</sup>lt;sup>2</sup>Jin-Pareschi-Toscani, SIANUM 2000, Lemou-Mieussens SISC 2008 → < Ξ → < Ξ → Ξ → ⊃ < ⊘ <



$$\begin{cases} \epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \quad 1 < \alpha < 2, \\ f(0, x) = f_{\text{in}}(x). \end{cases}$$

• Decompose 
$$f = \rho \mathcal{F} + g$$
, then we have  
 $\epsilon^{\alpha} \partial_t (\rho \mathcal{F} + g) + \epsilon v \cdot \nabla_x (\rho \mathcal{F} + g) = \langle \rho \mathcal{F} + g \rangle \mathcal{F} - (\rho \mathcal{F} + g);$ 

② Split the system into two sub-equations

$$\begin{aligned} \epsilon^{\alpha}\partial_{t}\rho &= \langle g \rangle \,, \\ \epsilon^{\alpha}\partial_{t}g + \epsilon v \cdot \nabla_{x}(\rho\mathcal{F} + g) &= -g; \end{aligned}$$

**Notice:**  $\langle g \rangle \neq 0$  for finite  $\epsilon$ .

- This splitting is well-posed.
- Initial data decomposition

$$\begin{cases} \rho_{\rm in} = \langle f_{\rm in} \rangle - \langle g_{\rm in} \rangle = \langle f_{\rm in} + \epsilon v \cdot \nabla_x f_{\rm in} \rangle, \\ g_{\rm in} = f_{\rm in} - \rho_{\rm in} \mathcal{F}. \end{cases}$$

Li Wang (UCLA)

AP for fractional diffusion



$$\begin{cases} \epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \quad 1 < \alpha < 2, \\ f(0, x) = f_{\text{in}}(x). \end{cases}$$

• Decompose 
$$f = \rho \mathcal{F} + g$$
, then we have  
 $\epsilon^{\alpha} \partial_t (\rho \mathcal{F} + g) + \epsilon v \cdot \nabla_x (\rho \mathcal{F} + g) = \langle \rho \mathcal{F} + g \rangle \mathcal{F} - (\rho \mathcal{F} + g);$ 

**2** Split the system into two sub-equations

$$\begin{aligned} \epsilon^{\alpha}\partial_{t}\rho &= \langle g \rangle \,, \\ \epsilon^{\alpha}\partial_{t}g + \epsilon v \cdot \nabla_{x}(\rho\mathcal{F} + g) &= -g; \end{aligned}$$

**Notice:**  $\langle g \rangle \neq 0$  for finite  $\epsilon$ .

- This splitting is well-posed.
- Initial data decomposition

$$\begin{cases} \rho_{\rm in} = \langle f_{\rm in} \rangle - \langle g_{\rm in} \rangle = \langle f_{\rm in} + \epsilon v \cdot \nabla_x f_{\rm in} \rangle, \\ g_{\rm in} = f_{\rm in} - \rho_{\rm in} \mathcal{F}. \end{cases}$$



$$\begin{cases} \epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \quad 1 < \alpha < 2, \\ f(0, x) = f_{\text{in}}(x). \end{cases}$$

• Decompose 
$$f = \rho \mathcal{F} + g$$
, then we have  
 $\epsilon^{\alpha} \partial_t (\rho \mathcal{F} + g) + \epsilon v \cdot \nabla_x (\rho \mathcal{F} + g) = \langle \rho \mathcal{F} + g \rangle \mathcal{F} - (\rho \mathcal{F} + g);$ 

2 Split the system into two sub-equations

$$\begin{aligned} \epsilon^{\alpha}\partial_{t}\rho &= \langle g \rangle \,, \\ \epsilon^{\alpha}\partial_{t}g + \epsilon v \cdot \nabla_{x}(\rho\mathcal{F} + g) &= -g; \end{aligned}$$

**Notice:**  $\langle g \rangle \neq 0$  for finite  $\epsilon$ .

- This splitting is well-posed.
- Initial data decomposition

$$\begin{cases} \rho_{\rm in} = \langle f_{\rm in} \rangle - \langle g_{\rm in} \rangle = \langle f_{\rm in} + \epsilon v \cdot \nabla_x f_{\rm in} \rangle, \\ g_{\rm in} = f_{\rm in} - \rho_{\rm in} \mathcal{F}. \end{cases}$$

Li Wang (UCLA)

AP for fractional diffusion



$$\begin{cases} \epsilon^{\alpha} \partial_t f + \epsilon v \cdot \nabla_x f = \langle f \rangle \mathcal{F} - f, \quad 1 < \alpha < 2, \\ f(0, x) = f_{\text{in}}(x). \end{cases}$$

• Decompose 
$$f = \rho \mathcal{F} + g$$
, then we have  
 $\epsilon^{\alpha} \partial_t (\rho \mathcal{F} + g) + \epsilon v \cdot \nabla_x (\rho \mathcal{F} + g) = \langle \rho \mathcal{F} + g \rangle \mathcal{F} - (\rho \mathcal{F} + g);$ 

2 Split the system into two sub-equations

$$\begin{aligned} \epsilon^{\alpha}\partial_{t}\rho &= \langle g \rangle \,, \\ \epsilon^{\alpha}\partial_{t}g + \epsilon v \cdot \nabla_{x}(\rho\mathcal{F} + g) &= -g; \end{aligned}$$

**Notice:**  $\langle g \rangle \neq 0$  for finite  $\epsilon$ .

- This splitting is well-posed.
- Initial data decomposition

$$\begin{cases} \rho_{\rm in} = \langle f_{\rm in} \rangle - \langle g_{\rm in} \rangle = \langle f_{\rm in} + \epsilon v \cdot \nabla_x f_{\rm in} \rangle, \\ g_{\rm in} = f_{\rm in} - \rho_{\rm in} \mathcal{F}. \end{cases}$$



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^n}{\Delta t} = \left\langle g^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g^{n+1} - g^n}{\Delta t} + \epsilon v \cdot \nabla_x (\rho^* \mathcal{F} + g^{n+1}) = -g^{n+1}, \qquad \rho^* = \rho^{n+1} \text{ or } \rho^n. \end{cases}$$

• AP property:

$$\epsilon^{\alpha} \frac{\hat{g}^{n+1} - \hat{g}^n}{\Delta t} + i\epsilon v \cdot k(\hat{\rho}^* \mathcal{F} + \hat{g}^{n+1}) = -\hat{g}^{n+1}$$

$$\implies \hat{g}^{n+1} = -\frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \hat{\rho}^* \mathcal{F}$$

$$\implies \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\epsilon^{-\alpha} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*$$

$$\frac{\hat{\rho}^{n+1}-\hat{\rho}^n}{\Delta t} = \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\kappa |k|^{\alpha} \hat{\rho}^*$$

• Stability: unconditionally stable for  $\rho^* = \rho^{n+1}$ .



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \left\langle g^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g^{n+1} - g^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F} + g^{n+1}) = -g^{n+1}, \qquad \rho^{*} = \rho^{n+1} \text{ or } \rho^{n}. \end{cases}$$

• AP property:

$$\epsilon^{\alpha} \frac{\hat{g}^{n+1} - \hat{g}^n}{\Delta t} + i\epsilon v \cdot k(\hat{\rho}^* \mathcal{F} + \hat{g}^{n+1}) = -\hat{g}^{n+1}$$

$$\implies \hat{g}^{n+1} = -\frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \hat{\rho}^* \mathcal{F}$$

$$\implies \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\epsilon^{-\alpha} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*$$

$$\frac{\hat{\rho}^{n+1}-\hat{\rho}^n}{\Delta t}=\epsilon^{-\alpha}\left\langle \hat{g}^{n+1}\right\rangle =-\kappa|k|^{\alpha}\hat{\rho}^*$$

• Stability: unconditionally stable for  $\rho^* = \rho^{n+1}$ .



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \langle g^{n+1} \rangle, \\ \epsilon^{\alpha} \frac{g^{n+1} - g^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F} + g^{n+1}) = -g^{n+1}, \quad \rho^{*} = \rho^{n+1} \text{ or } \rho^{n}. \end{cases}$$

• AP property:

$$\epsilon^{\alpha} \frac{\hat{g}^{n+1} - \hat{g}^n}{\Delta t} + i\epsilon v \cdot k(\hat{\rho}^* \mathcal{F} + \hat{g}^{n+1}) = -\hat{g}^{n+1}$$

$$\implies \hat{g}^{n+1} = -\frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \hat{\rho}^* \mathcal{F}$$

$$\implies \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\epsilon^{-\alpha} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*$$

$$\frac{\hat{\rho}^{n+1}-\hat{\rho}^n}{\Delta t}=\epsilon^{-\alpha}\left\langle \hat{g}^{n+1}\right\rangle =-\kappa|k|^{\alpha}\hat{\rho}^*$$

• Stability: unconditionally stable for  $\rho^* = \rho^{n+1}$ .



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^n}{\Delta t} = \left\langle g^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g^{n+1} - g^n}{\Delta t} + \epsilon v \cdot \nabla_x (\rho^* \mathcal{F} + g^{n+1}) = -g^{n+1}, \qquad \rho^* = \rho^{n+1} \text{ or } \rho^n. \end{cases}$$

• AP property:

$$\epsilon^{\alpha} \frac{\hat{g}^{n+1} - \hat{g}^n}{\Delta t} + i\epsilon v \cdot k(\hat{\rho}^* \mathcal{F} + \hat{g}^{n+1}) = -\hat{g}^{n+1}$$

$$\implies \hat{g}^{n+1} = -\frac{i\epsilon v \cdot \kappa}{1 + i\epsilon v \cdot k} \hat{\rho}^* \mathcal{F}$$

$$\implies \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\epsilon^{-\alpha} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*$$

$$\frac{\hat{\rho}^{n+1}-\hat{\rho}^n}{\Delta t} = \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\kappa |k|^{\alpha} \hat{\rho}^*$$

• Stability: unconditionally stable for  $\rho^* = \rho^{n+1}$ .



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \langle g^{n+1} \rangle, \\ \epsilon^{\alpha} \frac{g^{n+1} - g^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F} + g^{n+1}) = -g^{n+1}, \quad \rho^{*} = \rho^{n+1} \text{ or } \rho^{n}. \end{cases}$$

• AP property:

$$\epsilon^{\alpha} \frac{\hat{g}^{n+1} - \hat{g}^n}{\Delta t} + i\epsilon v \cdot k(\hat{\rho}^* \mathcal{F} + \hat{g}^{n+1}) = -\hat{g}^{n+1}$$
$$\implies \hat{g}^{n+1} = -\frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \hat{\rho}^* \mathcal{F}$$

$$\implies \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\epsilon^{-\alpha} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*$$

$$\frac{\hat{\rho}^{n+1} - \hat{\rho}^n}{\Delta t} = \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\kappa |k|^{\alpha} \hat{\rho}^*$$

• Stability: unconditionally stable for  $\rho^* = \rho^{n+1}$ .



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \langle g^{n+1} \rangle, \\ \epsilon^{\alpha} \frac{g^{n+1} - g^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F} + g^{n+1}) = -g^{n+1}, \quad \rho^{*} = \rho^{n+1} \text{ or } \rho^{n}. \end{cases}$$

• AP property:

$$\epsilon^{\alpha} \frac{\hat{g}^{n+1} - \hat{g}^n}{\Delta t} + i\epsilon v \cdot k(\hat{\rho}^* \mathcal{F} + \hat{g}^{n+1}) = -\hat{g}^{n+1}$$
$$\implies \hat{g}^{n+1} = -\frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \hat{\rho}^* \mathcal{F}$$

$$\implies \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\epsilon^{-\alpha} \int \frac{i\epsilon v \cdot \kappa}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*$$

$$\frac{\hat{\rho}^{n+1}-\hat{\rho}^n}{\Delta t}=\epsilon^{-\alpha}\left\langle \hat{g}^{n+1}\right\rangle =-\kappa|k|^{\alpha}\hat{\rho}^*$$

• Stability: unconditionally stable for  $\rho^* = \rho^{n+1}$ .



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \langle g^{n+1} \rangle, \\ \epsilon^{\alpha} \frac{g^{n+1} - g^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F} + g^{n+1}) = -g^{n+1}, \quad \rho^{*} = \rho^{n+1} \text{ or } \rho^{n}. \end{cases}$$

• AP property:

$$\begin{aligned} \epsilon^{\alpha} \frac{\hat{g}^{n+1} - \hat{g}^{n}}{\Delta t} + i\epsilon v \cdot k(\hat{\rho}^{*}\mathcal{F} + \hat{g}^{n+1}) &= -\hat{g}^{n+1} \\ \implies \hat{g}^{n+1} &= -\frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \hat{\rho}^{*}\mathcal{F} \\ \implies \epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle &= -\epsilon^{-\alpha} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^{*} \to -\kappa |k|^{\alpha} \hat{\rho}^{*} \end{aligned}$$

$$\frac{\hat{\rho}^{n+1}-\hat{\rho}^n}{\Delta t}=\epsilon^{-\alpha}\left\langle \hat{g}^{n+1}\right\rangle =-\kappa|k|^{\alpha}\hat{\rho}^*$$

• Stability: unconditionally stable for  $\rho^* = \rho^{n+1}$ .

### Velocity truncation?



#### $\operatorname{Recall}$

$$\epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\frac{1}{\epsilon^{\alpha}} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*,$$

then a truncation of v in  $|v| < v_{\text{max}}$  brings in an error

$$\frac{1}{\epsilon^{\alpha}} \int_{|v| > v_{\max}} \frac{(\epsilon v \cdot k)^2}{1 + (\epsilon v \cdot k)^2} \frac{\kappa_0}{|v|^{N+\alpha}} \, \mathrm{d}v \sim \frac{\kappa_0 S^{N-1}}{\alpha} \frac{1}{v_{\max}^{\alpha}} |k|^{\alpha},$$

which implies that in order to to suppress the error to  $O(\epsilon)$ ,  $v_{\text{max}}$  should be chosen as  $O(\epsilon^{-\frac{1}{\alpha}})$ , not AP!

### Velocity truncation?



 $\operatorname{Recall}$ 

$$\epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\frac{1}{\epsilon^{\alpha}} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*,$$

then a truncation of v in  $|v| < v_{\text{max}}$  brings in an error

$$\frac{1}{\epsilon^{\alpha}} \int_{|v| > v_{\max}} \frac{(\epsilon v \cdot k)^2}{1 + (\epsilon v \cdot k)^2} \frac{\kappa_0}{|v|^{N+\alpha}} \, \mathrm{d}v \sim \frac{\kappa_0 S^{N-1}}{\alpha} \frac{1}{v_{\max}^{\alpha}} |k|^{\alpha},$$

which implies that in order to to suppress the error to  $O(\epsilon)$ ,  $v_{\text{max}}$  should be chosen as  $O(\epsilon^{-\frac{1}{\alpha}})$ , not AP!

イロト スポト スヨト スヨト 二日

### Velocity truncation?



 $\operatorname{Recall}$ 

$$\epsilon^{-\alpha} \left\langle \hat{g}^{n+1} \right\rangle = -\frac{1}{\epsilon^{\alpha}} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F} \,\mathrm{d}v \hat{\rho}^* \to -\kappa |k|^{\alpha} \hat{\rho}^*,$$

then a truncation of v in  $|v| < v_{\text{max}}$  brings in an error

$$\frac{1}{\epsilon^{\alpha}} \int_{|v| > v_{\max}} \frac{(\epsilon v \cdot k)^2}{1 + (\epsilon v \cdot k)^2} \frac{\kappa_0}{|v|^{N+\alpha}} \, \mathrm{d}v \sim \frac{\kappa_0 S^{N-1}}{\alpha} \frac{1}{v_{\max}^{\alpha}} |k|^{\alpha},$$

which implies that in order to to suppress the error to  $O(\epsilon)$ ,  $v_{\max}$  should be chosen as  $O(\epsilon^{-\frac{1}{\alpha}})$ , not AP!

イロト イポト イヨト イヨト 二日



$$\begin{split} \mathcal{F}(v) &= \mathcal{F}_{_{B}}(v) + \mathcal{F}_{_{T}}(v), \quad g(t,x,v) = g_{_{B}}(t,x,v) + g_{_{T}}(t,x,v) \\ \mathcal{F}_{_{B}}(v) &= \mathcal{F}(v)\mathbf{1}_{|v| \leq v_{\max}}, \quad \mathcal{F}_{_{T}}(v) = \mathcal{F}(v)\mathbf{1}_{|v| > v_{\max}}, \\ g_{_{B}}(v) &= g(v)\mathbf{1}_{|v| \leq v_{\max}}, \quad g_{_{T}}(v) = g(v)\mathbf{1}_{|v| > v_{\max}}. \end{split}$$

2 Rewrite the split system as

$$\begin{split} \epsilon^{\alpha}\partial_{t}\rho &= \langle g_{B} + g_{T} \rangle \,, \\ \epsilon^{\alpha}\partial_{t}g_{B} + \epsilon v \cdot \nabla_{x}(\rho\mathcal{F}_{B} + g_{B}) &= -g_{B} \,, \\ \epsilon^{\alpha}\partial_{t}g_{T} + \epsilon v \cdot \nabla_{x}(\rho\mathcal{F}_{T} + g_{T}) &= -g_{T} \,. \end{split}$$

) Use an *integrated* tail: approximate  $g_T$  by its steady state.

$$\epsilon v \cdot \nabla_x (\rho \mathcal{F}_{_T} + g_{_T}) = -g_{_T}$$

$$\implies \langle \hat{g}_{T} \rangle = \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \hat{\rho} := C(k)\hat{\rho}$$

Li Wang (UCLA)

・ロト ・回ト ・ヨト ・ヨト





$$\begin{split} \mathcal{F}(v) &= \mathcal{F}_{_{B}}(v) + \mathcal{F}_{_{T}}(v), \quad g(t, x, v) = g_{_{B}}(t, x, v) + g_{_{T}}(t, x, v) \\ \mathcal{F}_{_{B}}(v) &= \mathcal{F}(v) \mathbf{1}_{|v| \leq v_{\max}}, \qquad \mathcal{F}_{_{T}}(v) = \mathcal{F}(v) \mathbf{1}_{|v| > v_{\max}}, \\ g_{_{B}}(v) &= g(v) \mathbf{1}_{|v| \leq v_{\max}}, \qquad g_{_{T}}(v) = g(v) \mathbf{1}_{|v| > v_{\max}}. \end{split}$$

2 Rewrite the split system as

$$\begin{split} \epsilon^{\alpha}\partial_{t}\rho &= \langle g_{B} + g_{T} \rangle \,, \\ \epsilon^{\alpha}\partial_{t}g_{B} + \epsilon v \cdot \nabla_{x}(\rho\mathcal{F}_{B} + g_{B}) &= -g_{B}, \\ \epsilon^{\alpha}\partial_{t}g_{T} + \epsilon v \cdot \nabla_{x}(\rho\mathcal{F}_{T} + g_{T}) &= -g_{T}. \end{split}$$

) Use an *integrated* tail: approximate  $g_T$  by its steady state.

$$\epsilon v \cdot \nabla_x (\rho \mathcal{F}_{_T} + g_{_T}) = -g_{_T}$$

$$\implies \langle \hat{g}_T \rangle = \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \,\mathrm{d}v \hat{\rho} := C(k)\hat{\rho}$$





$$\begin{split} \mathcal{F}(v) &= \mathcal{F}_{_{B}}(v) + \mathcal{F}_{_{T}}(v), \quad g(t,x,v) = g_{_{B}}(t,x,v) + g_{_{T}}(t,x,v) \\ \mathcal{F}_{_{B}}(v) &= \mathcal{F}(v)\mathbf{1}_{|v| \leq v_{\max}}, \quad \mathcal{F}_{_{T}}(v) = \mathcal{F}(v)\mathbf{1}_{|v| > v_{\max}}, \\ g_{_{B}}(v) &= g(v)\mathbf{1}_{|v| \leq v_{\max}}, \quad g_{_{T}}(v) = g(v)\mathbf{1}_{|v| > v_{\max}}. \end{split}$$

**2** Rewrite the split system as

$$\begin{split} \epsilon^{\alpha}\partial_{t}\rho &= \langle g_{B}+g_{T}\rangle,\\ \epsilon^{\alpha}\partial_{t}g_{B}+\epsilon v\cdot\nabla_{x}(\rho\mathcal{F}_{B}+g_{B}) &= -g_{B},\\ \epsilon^{\alpha}\partial_{t}g_{T}+\epsilon v\cdot\nabla_{x}(\rho\mathcal{F}_{T}+g_{T}) &= -g_{T}. \end{split}$$

(a) Use an *integrated* tail: approximate  $g_T$  by its steady state.

$$\epsilon v \cdot \nabla_x (\rho \mathcal{F}_T + g_T) = -g_T$$

$$\implies \langle \hat{g}_{T} \rangle = \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \hat{\rho} := C(k)\hat{\rho}$$



(日) (四) (王) (王) (王)





$$\begin{split} \mathcal{F}(v) &= \mathcal{F}_{_{B}}(v) + \mathcal{F}_{_{T}}(v), \quad g(t,x,v) = g_{_{B}}(t,x,v) + g_{_{T}}(t,x,v) \\ \mathcal{F}_{_{B}}(v) &= \mathcal{F}(v)\mathbf{1}_{|v| \leq v_{\max}}, \quad \mathcal{F}_{_{T}}(v) = \mathcal{F}(v)\mathbf{1}_{|v| > v_{\max}}, \\ g_{_{B}}(v) &= g(v)\mathbf{1}_{|v| \leq v_{\max}}, \quad g_{_{T}}(v) = g(v)\mathbf{1}_{|v| > v_{\max}}. \end{split}$$

**2** Rewrite the split system as

$$\begin{split} \epsilon^{\alpha}\partial_{t}\rho &= \langle g_{B}+g_{T}\rangle,\\ \epsilon^{\alpha}\partial_{t}g_{B}+\epsilon v\cdot\nabla_{x}(\rho\mathcal{F}_{B}+g_{B}) &= -g_{B},\\ \epsilon^{\alpha}\partial_{t}g_{T}+\epsilon v\cdot\nabla_{x}(\rho\mathcal{F}_{T}+g_{T}) &= -g_{T}. \end{split}$$

**③** Use an *integrated* tail: approximate  $g_T$  by its steady state.

$$\epsilon v \cdot \nabla_x (\rho \mathcal{F}_T + g_T) = -g_T$$

$$\implies \langle \hat{g}_{T} \rangle = \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \,\mathrm{d}v \hat{\rho} := C(k)\hat{\rho}$$





#### Approximating $g_T$ by its steady state is valid when $\epsilon$ is small.

We do not want to introduce to much error in  $\epsilon^{\alpha}\partial_t \rho = \langle g_B + g_T \rangle$  for  $\epsilon \sim O(1)$ .

Need  $\frac{1}{\epsilon^{\alpha}} \langle g_T \rangle \sim O(\triangle t)$  when  $\epsilon \sim O(1)$ .

$$\int_{|v| > v_{\max}} \mathcal{F} \, \mathrm{d}v < \delta, \qquad \delta = \triangle t^p.$$

(ロ) (四) (E) (E) (E) (E)



Approximating  $g_T$  by its steady state is valid when  $\epsilon$  is small.

We do not want to introduce to much error in  $\epsilon^{\alpha}\partial_t \rho = \langle g_{\scriptscriptstyle B} + g_{\scriptscriptstyle T} \rangle$  for  $\epsilon \sim O(1)$ .

Need  $\frac{1}{\epsilon^{\alpha}} \langle g_T \rangle \sim O(\Delta t)$  when  $\epsilon \sim O(1)$ .

$$\int_{|v| > v_{\max}} \mathcal{F} \, \mathrm{d}v < \delta, \qquad \delta = \Delta t^p.$$



Approximating  $g_T$  by its steady state is valid when  $\epsilon$  is small.

We do not want to introduce to much error in  $\epsilon^{\alpha}\partial_t \rho = \langle g_{\scriptscriptstyle B} + g_{\scriptscriptstyle T} \rangle$  for  $\epsilon \sim O(1)$ .

Need  $\frac{1}{\epsilon^{\alpha}} \langle g_T \rangle \sim O(\Delta t)$  when  $\epsilon \sim O(1)$ .

$$\int_{|v| > v_{\max}} \mathcal{F} \, \mathrm{d}v < \delta, \qquad \delta = \Delta t^p.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



Approximating  $g_T$  by its steady state is valid when  $\epsilon$  is small.

We do not want to introduce to much error in  $\epsilon^{\alpha}\partial_t \rho = \langle g_{\scriptscriptstyle B} + g_{\scriptscriptstyle T} \rangle$  for  $\epsilon \sim O(1)$ .

Need  $\frac{1}{\epsilon^{\alpha}} \langle g_T \rangle \sim O(\Delta t)$  when  $\epsilon \sim O(1)$ .

$$\int_{|v| > v_{\max}} \mathcal{F} \, \mathrm{d}v < \delta, \qquad \delta = \Delta t^p.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \left\langle g_{B}^{n+1} \right\rangle + \left\langle g_{T}^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g_{B}^{n+1} - g_{B}^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F}_{B} + g_{B}^{n+1}) = -g_{B}^{n+1}, \\ \frac{1}{\epsilon^{\alpha}} \left\langle \hat{g}_{T}^{n+1} \right\rangle = \frac{1}{\epsilon^{\alpha}} \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}_{T}(v) \, \mathrm{d}v \hat{\rho}^{*} := C(k) \hat{\rho}^{*}, \end{cases}$$

step1 Compute  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle$  via  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle = C(k)\hat{\rho}^{*}(k)$ . step2 Solve  $\hat{g}_{B}^{n+1}(k, v)$  for  $|v| \leq v_{\max}$  from  $g_{B}$  equation. step3 Compute  $\langle \hat{g}_{B}^{n+1} \rangle$  by a simple summation in velocity space. step4 Plug  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{B}^{n+1} \rangle$  and  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1} \rangle$  into  $\hat{\rho}^{n+1}$  equation to get  $\hat{\rho}^{n+1}(k)$ .

Repeat the above three steps until the end of time  $t = t^M$ , and  $f^M$  is recovered from

$$\hat{f}^M(k,v) = \hat{\rho}^M(k)\mathcal{F}(v) + \hat{g}^M_B(k,v), \quad \text{for } |v| \le v_{\text{max}}.$$

・ロト ・回ト ・ヨト ・ヨト



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \left\langle g_{B}^{n+1} \right\rangle + \left\langle g_{T}^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g_{B}^{n+1} - g_{B}^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F}_{B} + g_{B}^{n+1}) = -g_{B}^{n+1}, \\ \frac{1}{\epsilon^{\alpha}} \left\langle \hat{g}_{T}^{n+1} \right\rangle = \frac{1}{\epsilon^{\alpha}} \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}_{T}(v) \, \mathrm{d}v \hat{\rho}^{*} := C(k) \hat{\rho}^{*}, \end{cases}$$

step1 Compute  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle$  via  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle = C(k)\hat{\rho}^{*}(k)$ . step2 Solve  $\hat{g}_{B}^{n+1}(k,v)$  for  $|v| \leq v_{\max}$  from  $g_{B}$  equation. step3 Compute  $\langle \hat{g}_{B}^{n+1} \rangle$  by a simple summation in velocity space. step4 Plug  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{B}^{n+1} \rangle$  and  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1} \rangle$  into  $\hat{\rho}^{n+1}$  equation to get  $\hat{\rho}^{n+1}(k)$ .

Repeat the above three steps until the end of time  $t = t^M$ , and  $f^M$  is recovered from

$$\hat{f}^M(k,v) = \hat{\rho}^M(k)\mathcal{F}(v) + \hat{g}^M_B(k,v), \quad \text{for } |v| \le v_{\text{max}}.$$



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \left\langle g_{\scriptscriptstyle B}^{n+1} \right\rangle + \left\langle g_{\scriptscriptstyle T}^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g_{\scriptscriptstyle B}^{n+1} - g_{\scriptscriptstyle B}^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F}_{\scriptscriptstyle B} + g_{\scriptscriptstyle B}^{n+1}) = -g_{\scriptscriptstyle B}^{n+1}, \\ \frac{1}{\epsilon^{\alpha}} \left\langle \hat{g}_{\scriptscriptstyle T}^{n+1} \right\rangle = \frac{1}{\epsilon^{\alpha}} \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}_{{\scriptscriptstyle T}}(v) \,\mathrm{d}v \hat{\rho}^{*} := C(k) \hat{\rho}^{*}, \end{cases}$$

**step1** Compute  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle$  via  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle = C(k)\hat{\rho}^{*}(k)$ . **step2** Solve  $\hat{g}_{B}^{n+1}(k, v)$  for  $|v| \leq v_{\max}$  from  $g_{B}$  equation. **step3** Compute  $\langle \hat{g}_{B}^{n+1} \rangle$  by a simple summation in velocity space. **step4** Plug  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{B}^{n+1} \rangle$  and  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1} \rangle$  into  $\hat{\rho}^{n+1}$  equation to get  $\hat{\rho}^{n+1}$ 

> Repeat the above three steps until the end of time  $t = t^M$ , and  $f^M$  is recovered from

$$\hat{f}^M(k,v) = \hat{\rho}^M(k)\mathcal{F}(v) + \hat{g}^M_B(k,v), \quad \text{for } |v| \le v_{\max}.$$



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \left\langle g_{\scriptscriptstyle B}^{n+1} \right\rangle + \left\langle g_{\scriptscriptstyle T}^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g_{\scriptscriptstyle B}^{n+1} - g_{\scriptscriptstyle B}^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F}_{\scriptscriptstyle B} + g_{\scriptscriptstyle B}^{n+1}) = -g_{\scriptscriptstyle B}^{n+1}, \\ \frac{1}{\epsilon^{\alpha}} \left\langle \hat{g}_{\scriptscriptstyle T}^{n+1} \right\rangle = \frac{1}{\epsilon^{\alpha}} \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}_{{\scriptscriptstyle T}}(v) \,\mathrm{d}v \hat{\rho}^{*} := C(k) \hat{\rho}^{*}, \end{cases}$$

step1 Compute  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle$  via  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle = C(k)\hat{\rho}^{*}(k)$ . step2 Solve  $\hat{g}_{B}^{n+1}(k,v)$  for  $|v| \leq v_{\max}$  from  $g_{B}$  equation. step3 Compute  $\langle \hat{g}_{B}^{n+1} \rangle$  by a simple summation in velocity space. step4 Plug  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{B}^{n+1} \rangle$  and  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1} \rangle$  into  $\hat{\rho}^{n+1}$  equation to get  $\hat{\rho}^{n+1}(k)$ .

Repeat the above three steps until the end of time  $t = t^M$ , and  $f^M$  is recovered from

$$\hat{f}^M(k,v) = \hat{\rho}^M(k)\mathcal{F}(v) + \hat{g}^M_B(k,v), \quad \text{for } |v| \le v_{\max}.$$

イロト スポト スヨト スヨト 二日



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \left\langle g_{\scriptscriptstyle B}^{n+1} \right\rangle + \left\langle g_{\scriptscriptstyle T}^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g_{\scriptscriptstyle B}^{n+1} - g_{\scriptscriptstyle B}^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F}_{\scriptscriptstyle B} + g_{\scriptscriptstyle B}^{n+1}) = -g_{\scriptscriptstyle B}^{n+1}, \\ \frac{1}{\epsilon^{\alpha}} \left\langle \hat{g}_{\scriptscriptstyle T}^{n+1} \right\rangle = \frac{1}{\epsilon^{\alpha}} \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}_{\scriptscriptstyle T}(v) \,\mathrm{d}v \hat{\rho}^{*} := C(k) \hat{\rho}^{*}, \end{cases}$$

step1 Compute  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle$  via  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle = C(k)\hat{\rho}^{*}(k)$ . step2 Solve  $\hat{g}_{B}^{n+1}(k, v)$  for  $|v| \leq v_{\max}$  from  $g_{B}$  equation. step3 Compute  $\langle \hat{g}_{B}^{n+1} \rangle$  by a simple summation in velocity space. step4 Plug  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{B}^{n+1} \rangle$  and  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1} \rangle$  into  $\hat{\rho}^{n+1}$  equation to get  $\hat{\rho}^{n+1}(k)$ .

Repeat the above three steps until the end of time  $t = t^M$ , and  $f^M$  is recovered from

$$\hat{f}^M(k,v) = \hat{\rho}^M(k)\mathcal{F}(v) + \hat{g}^M_B(k,v), \quad \text{for } |v| \le v_{\max}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



$$\begin{cases} \epsilon^{\alpha} \frac{\rho^{n+1} - \rho^{n}}{\Delta t} = \left\langle g_{B}^{n+1} \right\rangle + \left\langle g_{T}^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{g_{B}^{n+1} - g_{B}^{n}}{\Delta t} + \epsilon v \cdot \nabla_{x} (\rho^{*} \mathcal{F}_{B} + g_{B}^{n+1}) = -g_{B}^{n+1}, \\ \frac{1}{\epsilon^{\alpha}} \left\langle \hat{g}_{T}^{n+1} \right\rangle = \frac{1}{\epsilon^{\alpha}} \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}_{T}(v) \, \mathrm{d}v \hat{\rho}^{*} := C(k) \hat{\rho}^{*}, \end{cases}$$

step1 Compute  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle$  via  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1}(k) \rangle = C(k)\hat{\rho}^{*}(k)$ . step2 Solve  $\hat{g}_{B}^{n+1}(k, v)$  for  $|v| \leq v_{\max}$  from  $g_{B}$  equation. step3 Compute  $\langle \hat{g}_{B}^{n+1} \rangle$  by a simple summation in velocity space. step4 Plug  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{B}^{n+1} \rangle$  and  $\frac{1}{\epsilon^{\alpha}} \langle \hat{g}_{T}^{n+1} \rangle$  into  $\hat{\rho}^{n+1}$  equation to get  $\hat{\rho}^{n+1}(k)$ .

Repeat the above three steps until the end of time  $t = t^M$ , and  $f^M$  is recovered from

$$\hat{f}^M(k,v) = \hat{\rho}^M(k)\mathcal{F}(v) + \hat{g}^M_B(k,v), \quad \text{for } |v| \le v_{\max}.$$

(ロ) (部) (注) (注) (注) ()



### Second order scheme



$$\begin{cases} \epsilon^{\alpha} \frac{3\rho^{n+1} - 4\rho^{n} + \rho^{n-1}}{2\Delta t} = \left\langle g_{\scriptscriptstyle B}^{n+1} \right\rangle + \left\langle g_{\scriptscriptstyle T}^{n+1} \right\rangle, \\ \epsilon^{\alpha} \frac{3g_{\scriptscriptstyle B}^{n+1} - 4g_{\scriptscriptstyle B}^{n} + g_{\scriptscriptstyle B}^{n-1}}{2\Delta t} + \epsilon v \cdot \nabla_x (\rho^* \mathcal{F}_{\scriptscriptstyle B} + g_{\scriptscriptstyle B}^{n+1}) = -g_{\scriptscriptstyle B}^{n+1}, \\ \left\langle \hat{g}_{\scriptscriptstyle T}^{n+1} \right\rangle = \int_{|v| \ge v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}_{\scriptscriptstyle T}(v) \, \mathrm{d}v \hat{\rho}^*. \end{cases}$$

- $\rho^* = 2\rho^n \rho^{n-1}$  for an explicit scheme and  $\rho^* = \rho^{n+1}$  for an implicit scheme.
- $\delta = \triangle t^2$  in the truncation.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

### Outline

Linear Boltzmann equation and fractional diffusion limit

2 Asymptotic preserving scheme

3 Numerical examples



(日) (四) (王) (王) (王)

### Tail effect



$$I_1(k) := \lim_{\epsilon \to 0} \frac{1}{\epsilon^{\alpha}} \int_{|v| < v_{\max}} \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \quad \left( \lim_{\epsilon \to 0} \frac{1}{\epsilon^{\alpha}} \int \frac{i\epsilon v \cdot k}{1 + i\epsilon v \cdot k} \mathcal{F}(v) \, \mathrm{d}v \to \kappa |k|^{\alpha} \right)$$



Figure : The integral  $I_1$  as a function of the frequency k, with different cutoff  $v_{\max}$  in velocity space.  $\alpha = 1.5$ .

### Uniform convergence





Figure : Convergence test for the first order (left) and second order (right) explicit AP schemes for different  $\epsilon$ .

Li Wang (UCLA)

イロト スポト スヨト スヨト 二日

### Stability



• Boundedness of energy  $E_{\rho} = \left(\int \rho^2 dx\right)^{1/2}, \quad E_g = \left(\int \int \frac{g^2}{\mathcal{F}} dx dv\right)^{1/2}$ 



Figure : Left  $\epsilon = 1$ . Right  $\epsilon = 10^{-6}$ .

・ロト ・ 日ト ・ ヨト ・ ヨト …



### AP property





Figure : The snapshots of the density  $\rho$  obtained from AP scheme with  $\epsilon = 10^{-8}$  (blue solid line) and that by solving the limit equation (red dashed line), at various time.  $N_x = 200$  points are used.  $\alpha = 1.5$ .

Li Wang (UCLA)

22 / 24

### Outline

Linear Boltzmann equation and fractional diffusion limit

2 Asymptotic preserving scheme

3 Numerical examples



(日) (四) (王) (王) (王)

### Conclusion



We have construted an AP scheme for the linear Boltzmann equation with fractional diffusion limit.

- uniformly stable for a wide range of  $\epsilon$
- implicit terms are treated efficiently

Key ideas:

- A new macro-micro decomposition
- Velocity truncation and tail compensation

## Thank you!